

New Tasks in Beam-Beam Modeling

N. Malitsky, N. D'Imperio, C. Montag, R.Tomas

High Performance Computing with BlueGene/L and QCDOC Brookhaven National Laboratory
October 27-28, 2004

Acknowledgements

- C-A Department: M. Bai, I.Ben-Zvi, M.Blaskiewicz,
 A.Fedotov, W. Fischer, V.Litvinenko, A.Luccio, F. Pilat,
 V.Ptitsyn, T. Roser, T. Satogata, J. Wei
- Computational Science Center: J. Davenport
- IT Division: M. Cuttler
- Cornell University: R.Talman
- **IBM:** G. Bhanot, B. Walkup

Outline

- BNL C-A Complex
 - RHIC
 - RHIC II
 - eRHIC
- Beam-Beam Application
 - Conceptual Model
 - UAL-based Solution
- Benchmark
- Summary

C-AD Accelerator Complex

Future plans for RHIC

T. Roser. Beam Experiments workshop, September 16, 2004

Machine goals for next 4 years (pre-RHICII):

- Enhanced RHIC luminosity (112 bunches, β * = 1m):
- Au Au: 8×10^{26} cm⁻² s⁻¹ (100 GeV/nucleon)

4× design 2× achieved

- For protons also 2×10^{11} protons/bunch (no IBS):
- p \uparrow p \uparrow : 60 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (100 GeV) 150 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (250 GeV) (luminosity averaged over store delivered to 2 IRs)
- 16× design 6× achieved

Review by Machine Advisory Committee, Nov 8-9, 2004

EBIS received CD0 this summer; interest in Uranium beams for RHIC RHIC II (e-cooling, 40 × design)
eRHIC

P-P Luminosity limit: beam-beam effect

W. Fischer. RHIC Retreat, June 7, 2004

	ISR	SPS	Tevatron	HERAp	RHIC*	RHIC	LHC
			Run I		pp 2003	pp goal	
Bunches per beam	coasting	3	6	174	55	111	2808
Experiments	6	2	2	2	4	2	4
Parasitic interactions		4	10	_	_	_	120
beam-beam ξ / IP	0.001	0.009	0.008	0.0007	0.004	0.007	0.003
Total bb tune spread, max	0.008	0.028	0.024	0.0014	0.015	0.015	0.010

^{*} Numbers for $\,\epsilon_{\,N}$ =15 μm and N_b =0.7 10 11

So far, there is no comprehensive model explaining the beam-beam tune spread criteria.

This is our Task.

M. Bai

Au-Au Luminosity limit: intra-beam scattering

J. Wei. ICFA Workshop, October 18, 2004

RHIC II

I. Ben-Zvi et al. ZDR Electron Cooling for RHIC, 2004

Electron-Ion Collider at RHIC: eRHIC

V. Ptitsyn et al. eRHIC ZDR, 2004

Conceptual Model of the Beam-Beam Application

Core Part:

- 1. Sector map
- 2. Beam-beam kick

Unidentified Feasible Objects (UFO):

- tune modulation
- beam-beam offsets
- intra-beam scattering
- electron cooling

- ...

Unified Accelerator Libraries (UAL) Environment

http://www.ual.bnl.gov

RHIC II basic beam-beam modeling with the bi-Gaussian beam (C. Montag)

Basic Model:

- Linear matrix + chromatic effects
- Beam-beam kick
- Random tune fluctuation

Beam-Beam Effect

Electric Field Due to Gaussian Distribution:

Basseti and Erskine, CERN-ISR-TH/80-06

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \frac{\lambda}{2\epsilon_0\sqrt{\pi}} \frac{1}{s} \begin{pmatrix} \Im \\ \Re \end{pmatrix} \left(w \left(\frac{x_w}{s} + i \frac{y_w}{s} \right) - e^{-\left(\frac{x_w^2}{2s_x^2} + \frac{y_w^2}{2s_y^2} \right)} w \left(\frac{x_w}{s} \frac{s_y}{s_x} + i \frac{y_w}{s} \frac{s_x}{s_y} \right) \right)$$

Electric Field of the Round Gaussian Beam:

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \frac{\lambda}{2\pi\epsilon_0} \frac{1 - e^{-r^2/(2s^2)}}{r^2} \begin{pmatrix} x \\ y \end{pmatrix}$$

Other approaches:

- 1. Y.Okamoto, R.Talman. Rational Approximation of the Complex Error Function.
- 2. J. Qiang, M.Furman, R.Ryne. Strong-Strong Particle-In-Cell approach.
- 3. K. Ohmi. Quasi-Strong-Strong algorithm.
- 4. W.Herr, M.P.Zorzano, F.Jones. Hybrid fast multipole method.

. .

Sector Map

1. Linear Matrix:

 $x_{i} = M_{ij} x_{j}$, where i, j = 1,...6codes: a few lines

- fast

- no non-linear effects

2. Taylor Map

 $X_i = M_{ii} X_i + T_{iik} X_i X_k + \dots$ codes: UAL/ZLIB, PTC, ...

- does include non-linear effects
- faster then element-by-element tracking
- not symplectic

3. Dragt-Finn Factorization

 $M = Rexp(:f_3:)exp(:f_4:) ... exp(:f_{O+1}:)$ $\exp(:f:) = \sum_{m} \frac{1}{m!} [f,]^m$

- symplectic (in theory)

- computation is based on Taylor series

codes: MARYLIE, PTC, COSY INFINITY, ...

4. Irwin's kick factorization

 $\exp(:g:) = 1 + [g,]$

- includes non-linear effects
- $M = R*M_1*exp(:g_1:)M_1^{-1}M_2exp(:g_2:)...$ computation is based on linear matrices and symplectic non-liner kicks

Computational time of various algorithms running on the 2.4 GHz CPU

Model Components	Time, µs				
RHIC (revolution period)	12.5				
Basic model:					
The uncoupled linear matrix with chromatic effects	0.35				
The round beam-beam kick	0.7				
DA-based mappers:					
1st order (linear) Taylor map	4				
5 th order (decapole, dodecapole) Taylor map	45				
Irwin's kick factorization (Γ – number of kicks and linear matrices)					
3^{rd} order, $\Gamma = 12$	2.4+				
5^{th} order, $\Gamma = 27$	5.4+				

Timing Budget of the proposed beam-beam application

Single-particle one-turn tracking:

- Weak-strong round beam-beam kick: 4*0.7 μs
- Irwin's 3rd order kick factorization: 4*2.4 μs

 $12.4 \mu s$

Multi-particle multi-turn application:

1K particles *100M turns *12.4 μ s = 344 hours

Parallel version is embarrassingly scalable because it can be divided into a sequence of steps containing one beam-beam force calculation per several thousand turns of serial tracking

Practical calculation time: 8 hours

Required computer resources: 344/8 = 43 CPUs

Benchmark results

	Time, μs					
	ZLIB linear	MPI_Allreduce				
	mapping	integer				
Desktop, 2.4 GHz	4	-				
CDIC Linux cluster						
4 CPUs	4.4	1300				
32 CPUs	5.4	1500				
IBM BlueGene/L						
32 CPUs	19.6	3.4				
128 CPUs	19.7	4.6				
512 CPUs	19.8	5.2				

Brief summary of BG/L:

- 1. Communication is extremely fast (mapping vs MPI_Allreduce) and weakly depends on the number of nodes
- 2. System is very homogeneous (mapping time is constant)
- 3. Each CPU is 4-5 times slower then CDIC one, but a complex with 1000 CPUs will bring an additional performance factor of 8.

Summary

- Beam-beam effect is a major limiting factor for luminosity of the present RHIC proton operations and future RHIC II and eRHIC facilities.
- So far, there is no comprehensive model explaining the RHIC beam-beam tune spread criteria ($\xi = 0.015\text{-}0.020$)
- UAL off-line simulation environment addresses this task by providing a mechanism for composing such a model from an open collection of various tracking algorithms and physical effects.
- CDIC Linux cluster meets the immediate requirements of the initial beam-beam applications
- IBM BlueGene/L may bring the additional performance factor, opening a door for advanced algorithms (e.g. higher order maps, PIC approach, *etc.*) and/or additional effects (e.g. ibs, electron cooling, *etc.*)